Result: A New Linear Programming Approach to Decoding Linear Block Codes

Title:
A New Linear Programming Approach to Decoding Linear Block Codes
Source:
IEEE transactions on information theory. 54(3):1061-1072
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2008.
Publication Year:
2008
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Théorie du signal et des communications, Signal and communications theory, Codage, codes, Coding, codes, Algorithme, Algorithm, Algoritmo, Borne inférieure, Lower bound, Cota inferior, Code bloc, Block code, Código bloque, Code contrôle parité, Parity check codes, Code correcteur erreur, Error correcting code, Código corrector error, Code linéaire, Linear code, Código lineal, Contrôle parité, Parity check, Control paridad, Distance Hamming, Hamming distance, Distancia Hamming, Distance code, Code distance, Distancia código, Distance minimale, Minimal distance, Distancia mínima, Décodage maximum vraisemblance, Maximum likelihood decoding, Descodificación máxima verosimilitud, Envoi message, Message passing, Evaluation performance, Performance evaluation, Evaluación prestación, Méthode séparation et évaluation, Branch and bound method, Método branch and bound, Performance algorithme, Algorithm performance, Resultado algoritmo, Polytope, Politope, Programmation en nombres entiers, Integer programming, Programación entera, Programmation linéaire, Linear programming, Programación lineal, Fractional distance, fundamental polytope, linear programming (LP) decoding, message-passing decoder, pseudodistance, single parity-check (SPC) product code
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical Engineering, Columbia University, New York, NY 10027, United States
Google, New York, NY 10011, United States
ISSN:
0018-9448
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.20119630
Database:
PASCAL Archive

Further Information

In this paper, we propose a new linear programming formulation for the decoding of general linear block codes. Different from the original formulation given by Feldman, the number of total variables to characterize a parity-check constraint in our formulation is less than twice the degree of the corresponding check node. The equivalence between our new formulation and the original formulation is proven. The new formulation facilitates to characterize the structure of linear block codes, and leads to new decoding algorithms. In particular, we show that any fundamental polytope is simply the intersection of a group of the so-called minimum polytopes, and this simplified formulation allows us to formulate the problem of calculating the minimum Hamming distance of any linear block code as a simple linear integer programming problem with much less auxiliary variables. We then propose a branch-and-bound method to compute a lower bound to the minimum distance of any linear code by solving a corresponding linear integer programming problem. In addition, we prove that, for the family of single parity-check (SPC) product codes, the fractional distance and the pseudodistance are both equal to the minimum distance. Finally, we propose an efficient algorithm for decoding SPC product codes with low complexity and maximum-likelihood (ML) decoding performance.