Treffer: Mitigating Memory Wall Effects in High-Clock-Rate and Multicore CMOS 3-D Processor Memory Stacks : Simulations indicate that 3-D stacking of memory chips can overcome memory limitations on computer processing by allowing for faster clock rates or improved transfer of data and address information

Title:
Mitigating Memory Wall Effects in High-Clock-Rate and Multicore CMOS 3-D Processor Memory Stacks : Simulations indicate that 3-D stacking of memory chips can overcome memory limitations on computer processing by allowing for faster clock rates or improved transfer of data and address information
Source:
3-D Integration TechnologiesProceedings of the IEEE. 97(1):108-122
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2009.
Publication Year:
2009
Physical Description:
print, 39 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Appareillage électronique et fabrication. Composants passifs, circuits imprimés, connectique, Electronic equipment and fabrication. Passive components, printed wiring boards, connectics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Transistors, Circuits intégrés, Integrated circuits, Conception. Technologies. Analyse fonctionnement. Essais, Design. Technologies. Operation analysis. Testing, Circuits intégrés par fonction (dont mémoires et processeurs), Integrated circuits by function (including memories and processors), Alliage semiconducteur, Semiconductor alloys, Antémémoire, Cache memory, Antememoria, Canal bus, Bus(channel), Canal colector, Circuit intégré, Integrated circuit, Circuito integrado, Décharge électrostatique, Electrostatic discharge, Effet mémoire, Memory effect, Efecto memoria, Empilement, Stacking, Apilamiento, Evaluation performance, Performance evaluation, Evaluación prestación, Facteur mérite, Figure of merit, Factor mérito, Horloge, Clock, Reloj, Interconnexion, Interconnection, Interconexión, Modèle 2 dimensions, Two dimensional model, Modelo 2 dimensiones, Modèle 3 dimensions, Three dimensional model, Modelo 3 dimensiones, Mémoire partagée, Shared memory, Memoria compartida, Packaging électronique, Electronic packaging, Packaging electrónico, Processeur, Processor, Procesador, Résistance parasite, Parasitic resistance, Resistencia parásita, Technologie MOS complémentaire, Complementary MOS technology, Tecnología MOS complementario, Transistor bipolaire hétérojonction, Heterojunction bipolar transistors, 3-D memory, Cache memories, chip stacking, memory wall, multicore processors, multithreading, simulation
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, United States
ISSN:
0018-9219
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.21244869
Database:
PASCAL Archive

Weitere Informationen

Three-dimensional chip (3-D) stacking technology provides a new approach to address the so-called memory wall problem. Memory processor chip stacking reduces this memory wall problem, permitting faster clock rates (with suitable processor logic) or permitting multicore access to shared memory using a large number of vertical vias between tiers in the stack, for ultrawide bit path transfer of data and address information to and from various levels of cache. Although a limited amount of parallel access is possible using conventional two-dimensional (2-D) chip memory-processor approaches, 3-D memory-processor stacking greatly extends this to much larger capacity memories. We evaluate high-clock-rate processors as well as shared memory processors with a large number of cores. Various architectural design options to reduce the impact of the memory wall on the processor performance are explored and validated through simulations. Certain architectural features can be implemented in a 3-D chip, such as an ultrawide, ultrashort vertical bus with low parasitic resistance and the elimination of conventional electrostatic discharge, and packaging parasitics required in multiple package 2-D solutions. The objective is to reduce the clocks per instruction figure of merit for high clock speeds in order to deliver significant performance levels. High-clock-rate processors can be designed with SiGe heterostructure bipolar transistors to obtain processors operating on the order of 16 or 32 GHz.