Result: Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums

Title:
Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums
Source:
Discrete mathematics. 309(10):3346-3363
Publisher Information:
Kidlington: Elsevier, 2009.
Publication Year:
2009
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Schoolofscience, Dalian Nationalities University, Dalian 116600, China
Department of Mathematics, Nanjing University, Nanjing 210093, China
ISSN:
0012-365X
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.21543582
Database:
PASCAL Archive

Further Information

In this paper, by the generating function method, we establish various identities concerning the (higher order) Bernoulli polynomials, the (higher order) Euler polynomials, the Genocchi polynomials and the degenerate higher order Bernoulli polynomials. Particularly, some of these identities are also related to the power sums and alternate power sums. It can be found that, many well known results, especially the multiplication theorems, and some symmetric identities demonstrated recently, are special cases of our results.