Result: On the approximability of robust spanning tree problems

Title:
On the approximability of robust spanning tree problems
Source:
Theoretical computer science. 412(4-5):365-374
Publisher Information:
Oxford: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Divers, Miscellaneous, Algorithme approximation, Approximation algorithm, Algoritmo aproximación, Approximation, Aproximación, Arbre maximal, Spanning tree, Arbol máximo, Complexité calcul, Computational complexity, Complejidad computación, Coût, Costs, Coste, Incertitude, Uncertainty, Incertidumbre, Informatique théorique, Computer theory, Informática teórica, Méthode optimisation, Optimization method, Método optimización, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Performance algorithme, Algorithm performance, Resultado algoritmo, Temps polynomial, Polynomial time, Tiempo polinomial, 49XX, 65K10, 65Kxx, 68W20, 68W25, Algorithme polynomial, Problème NP, Randomized algorithm, Robust optimization, Two-stage optimization
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Industrial, Engineering and Management, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
ISSN:
0304-3975
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.23743331
Database:
PASCAL Archive

Further Information

In this paper the minimum spanning tree problem with uncertain edge costs is discussed. In order to model the uncertainty a discrete scenario set is specified and a robust framework is adopted to choose a solution. The min-max, min-max regret and 2-stage min-max versions of the problem are discussed. The complexity and approximability of all these problems are explored. It is proved that the min-max and min-max regret versions with nonnegative edge costs are hard to approximate within O(log1-∈ n) for any ∈ > O unless the problems in NP have quasi-polynomial time algorithms. Similarly, the 2-stage min-max problem cannot be approximated within O(log n) unless the problems in NP have quasi-polynomial time algorithms. In this paper randomized LP-based approximation algorithms with performance bound of O(log2 n) for min-max and 2-stage min-max problems are also proposed.