Result: Study on hybrid PS-ACO algorithm
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
Ant colony optimization (ACO) algorithm is a recent meta-heuristic method inspired by the behavior of real ant colonies. The algorithm uses parallel computation mechanism and performs strong robustness, but it faces the limitations of stagnation and premature convergence. In this paper, a hybrid PS-ACO algorithm, ACO algorithm modified by particle swarm optimization (PSO) algorithm, is presented. The pheromone updating rules of ACO are combined with the local and global search mechanisms of PSO. On one hand, the search space is expanded by the local exploration ; on the other hand, the search process is directed by the global experience. The local and global search mechanisms are combined stochastically to balance the exploration and the exploitation, so that the search efficiency can be improved. The convergence analysis and parameters selection are given through simulations on traveling salesman problems (TSP). The results show that the hybrid PS-ACO algorithm has better convergence performance than genetic algorithm (GA), ACO and MMAS under the condition of limited evolution iterations.