Result: Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups

Title:
Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups
Source:
IMA journal of numerical analysis. 31(1):322-347
Publisher Information:
Oxford: Oxford University Press, 2011.
Publication Year:
2011
Physical Description:
print, 1 p.3/4
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Zhejiang University of Technology, Hangzhou 310032, China
Department of Mathematics, Zhejiang University, Hangzhou 310027, China
ISSN:
0272-4979
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23896564
Database:
PASCAL Archive

Further Information

With the classical assumptions on f, a convergence criterion of Newton's method (independent of affine connections) to find zeros of a mapping f from a Lie group to its Lie algebra is established, and estimates of the convergence domains of Newton's method are obtained, which improve the corresponding results in Owren & Welfert (2000, BIT Numer. Math., 40, 121-145) and Wang & Li (2006, J. Zhejiang Univ. Sci. A, 8, 978-986). Applications to optimization are provided and the results due to Mahony (1996, Linear Algebra Appl., 248, 67-89) are extended and improved accordingly.