Result: Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz―Sobolev spaces
Title:
Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz―Sobolev spaces
Authors:
Source:
Applied mathematics and computation. 217(14):6624-6632
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Analyse fonctionnelle, Functional analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Equations aux dérivées partielles, problèmes aux valeurs limites, Partial differential equations, boundary value problems, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Equation dérivée partielle, Partial differential equation, Ecuación derivada parcial, Espace Sobolev, Sobolev space, Espacio Sobolev, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Opérateur différentiel, Differential operator, Operador diferencial, Point critique, Critical point, Punto crítico, Problème non linéaire, Nonlinear problems, Problème valeur limite, Boundary value problem, Problema valor limite, Programmation mathématique, Mathematical programming, Programación matemática, Solution faible, Weak solution, Solución débil, 34Lxx, 35B38, 46E30, 46E35, 47E05, 49R50, 65K10, 65Kxx, 65N99, 65Nxx, Domaine borné, Non-homogeneous differential operator, Orlicz-Sobolev space
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Central European University, 1051 Budapest, Hungary
Department of Mathematics, University of Craiova, Craiova 200585, Romania
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana 1000, Slovenia
Faculty of Education, University of Ljubljana, Kardeljeva ploščad 16, Ljubljana 1000, Slovenia
Department of Mathematics, University of Craiova, Craiova 200585, Romania
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana 1000, Slovenia
Faculty of Education, University of Ljubljana, Kardeljeva ploščad 16, Ljubljana 1000, Slovenia
ISSN:
0096-3003
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23933044
Database:
PASCAL Archive
Further Information
We study a non-homogeneous boundary value problem in a smooth bounded domain in RN. We prove the existence of at least two non-negative and non-trivial weak solutions. Our approach relies on Orlicz-Sobolev spaces theory combined with adequate variational methods and a variant of Mountain Pass Lemma.