Treffer: Sharp Differential Estimates of Li-Yau-Hamilton Type for Positive (p, p)-Forms on Kähler Manifolds
Title:
Sharp Differential Estimates of Li-Yau-Hamilton Type for Positive (p, p)-Forms on Kähler Manifolds
Authors:
Source:
Communications on pure and applied mathematics. 64(7):920-974
Publisher Information:
Hoboken, NJ: Wiley, 2011.
Publication Year:
2011
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions de plusieurs variables complexes et espaces analytiques, Several complex variables and analytic spaces, Equations aux dérivées partielles, Partial differential equations, Géométrie, Geometry, Géométrie différentielle, Differential geometry, Généralités, histoire et biographie, General, history and biography, Mathématiques générales, General mathematics, Equation chaleur, Heat equation, Ecuación calor, Laplacien p, P laplacian, Laplaciana p, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Solution positive, Positive solution, Solución positiva, 32J27, 35K05, 53C55
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
University of California, San Diego, United States
Capital Normal University, China
Capital Normal University, China
ISSN:
0010-3640
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24198952
Database:
PASCAL Archive
Weitere Informationen
In this paper we study the heat equation (of Hodge Laplacian) deformation of (p, p)-forms on a Kähler manifold. After identifying the condition and establishing that the positivity of a (p. p)-form solution is preserved under such an invariant condition, we prove the sharp differential Harnack (in the sense of Li-Yau-Hamilton) estimates for the positive solutions of the Hodge Laplacian heat equation. We also prove a nonlinear version coupled with the Kähler-Ricci flow and some interpolating matrix differential Harnack-type estimates for both the Kahler-Ricci flow and the Ricci flow.