Treffer: Sharp Differential Estimates of Li-Yau-Hamilton Type for Positive (p, p)-Forms on Kähler Manifolds

Title:
Sharp Differential Estimates of Li-Yau-Hamilton Type for Positive (p, p)-Forms on Kähler Manifolds
Authors:
Source:
Communications on pure and applied mathematics. 64(7):920-974
Publisher Information:
Hoboken, NJ: Wiley, 2011.
Publication Year:
2011
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
University of California, San Diego, United States
Capital Normal University, China
ISSN:
0010-3640
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24198952
Database:
PASCAL Archive

Weitere Informationen

In this paper we study the heat equation (of Hodge Laplacian) deformation of (p, p)-forms on a Kähler manifold. After identifying the condition and establishing that the positivity of a (p. p)-form solution is preserved under such an invariant condition, we prove the sharp differential Harnack (in the sense of Li-Yau-Hamilton) estimates for the positive solutions of the Hodge Laplacian heat equation. We also prove a nonlinear version coupled with the Kähler-Ricci flow and some interpolating matrix differential Harnack-type estimates for both the Kahler-Ricci flow and the Ricci flow.