Treffer: RADIATIVE DECAY OF BUBBLE OSCILLATIONS IN A COMPRESSIBLE FLUID

Title:
RADIATIVE DECAY OF BUBBLE OSCILLATIONS IN A COMPRESSIBLE FLUID
Source:
SIAM journal on mathematical analysis. 43(1-2):828-876
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2011.
Publication Year:
2011
Physical Description:
print, 46 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions de plusieurs variables complexes et espaces analytiques, Several complex variables and analytic spaces, Equations aux dérivées partielles, Partial differential equations, Théorie des opérateurs, Operator theory, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Amortissement, Damping, Amortiguación, Analyse mathématique, Mathematical analysis, Análisis matemático, Cinématique, Kinematics, Cinemática, Condition aux limites, Boundary condition, Condiciones límites, Demi plan, Half plane, Semiplano, Dynamique gaz, Gas dynamics, Dinámica gas, Energie, Energy, Energía, Equation onde, Wave equation, Ecuación onda, Espace temps, Space time, Espacio tiempo, Etat équilibre, Equilibrium state, Estado equilibrio, Fluide compressible, Compressible fluid, Fluido compresible, Nombre Mach, Mach number, Número Mach, Onde Rayleigh, Rayleigh wave, Onda Rayleigh, Onde capillaire, Capillary wave, Onda capilar, Onde surface, Surface wave, Onda superficie, Oscillation, Oscilación, Perturbation singulière, Singular perturbation, Perturbación singular, Potentiel vitesse, Velocity potential, Potencial velocidad, Résolvante, Resolvent, Resolvente, Résonance, Resonance, Resonancia, Singularité, Singularity, Singularidad, Sphère, Sphere, Esfera, Surface, Superficie, 32Dxx, 35B34, 35J05, 47A10, 58J50, Continuation analytique, Analytic continuation, Décomposition exponentielle, Exponential decay, Limite singulière, 35Lxx, 76N, Neumann to Dirichlet map, bubble, capillary waves, compressible fluid, radiation damping, scattering resonance, surface tension
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Natural Sciences, University of California, 5200 North Lake Rd, Merced, CA 95343, United States
Department of Applied Physics and Applied Mathematics, 500 W. 120th St., Columbia University, New York, NY 10027, United States
ISSN:
0036-1410
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24388624
Database:
PASCAL Archive

Weitere Informationen

Consider the dynamics of a gas bubble in an inviscid, compressible liquid with surface tension. Kinematic and dynamic boundary conditions couple the bubble surface deformation dynamics with the dynamics of waves in the fluid. This system has a spherical equilibrium state, resulting from the balance of the pressure at infinity and the gas pressure within the bubble. We study the linearized dynamics about this equilibrium state in a center-of-mass frame. We prove that the velocity potential and bubble surface perturbation satisfy pointwise-in-space exponential time-decay estimates. The time-decay rate is governed by the imaginary parts of scattering resonances. These are characterized by a non-self-adjoint spectral problem or as pole singularities in the lower half plane of the analytic continuation of a resolvent operator from the upper half plane, across the real axis into the lower half plane. The time-decay estimates are a consequence of resonance mode expansions for the velocity potential and bubble surface perturbations. The weakly compressible case (small Mach number, e) is a singular perturbation of the incompressible limit. The scattering resonances which govern the remarkably slow time-decay are Rayleigh resonances, associated with capillary waves, due to surface tension, on the bubble surface, which impart their energy slowly to the unbounded fluid. Rigorous results, asymptotics, and high-precision numerical studies indicate that the Rayleigh resonances which are closest to the real axis satisfy |Jλ*(∈)/ℜλ*(∈)| = O(exp(-κ We ∈-2)), κ > 0. Here, We denotes the Weber number, a dimensionless ratio comparing inertia and surface tension. To obtain the above results we prove a general result estimating the Neumann to Dirichlet map for the wave equation exterior to a sphere.