Result: A Global Foliation of Einstein-Euler Spacetimes with Gowdy-Symmetry on T 3

Title:
A Global Foliation of Einstein-Euler Spacetimes with Gowdy-Symmetry on T 3
Source:
Archive for rational mechanics and analysis. 201(3):841-870
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 35 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
Max-Planck-Institut für Gravitationsphysik. Albert-Einstein Institut, Am Mühlenberg 1, 14476 Potsdam, Germany
ISSN:
0003-9527
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Theoretical physics
Accession Number:
edscal.24424785
Database:
PASCAL Archive

Further Information

We investigate the initial value problem for the Einstein-Euler equations of general relativity under the assumption of Gowdy symmetry on T3, and we construct matter spacetimes with low regularity. These spacetimes admit both impulsive gravitational waves in the metric (for instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the fluid (that is, discontinuities propagating at about the sound speed). Given an initial data set, we establish the existence of a future development, and we provide a global foliation in terms of a globally and geometrically defined time-function, closely related to the area of the orbits of the symmetry group. The main difficulty lies in the low regularity assumed on the initial data set which requires a distributional formulation of the Einstein-Euler equations.