Result: Superconformal Structures on Generalized Calabi-Yau Metric Manifolds

Title:
Superconformal Structures on Generalized Calabi-Yau Metric Manifolds
Source:
Communications in mathematical physics. 306(2):333-364
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of California, Berkeley, CA 94720, United States
Department of Physics and Astronomy, Uppsala University, Uppsala, Box 516, 75120 Uppsala, Sweden
ISSN:
0010-3616
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.24427859
Database:
PASCAL Archive

Further Information

We construct an embedding of two commuting copies of the N = 2 superconformal vertex algebra in the space of global sections of the twisted chiral-anti-chiral de Rham complex of a generalized Calabi-Yau metric manifold, including the case when there is a non-trivial H-flux and non-vanishing dilaton. The 4 corresponding BRST charges are well defined on any generalized Kahler manifold. This allows one to consider the half-twisted model defining thus the chiral de Rham complex of a generalized Kahler manifold. The classical limit of this result allows one to recover the celebrated generalized Kähler identities as the degree zero part of an infinite dimensional Lie superalgebra attached to any generalized Kahler manifold. As a byproduct of our study we investigate the properties of generalized Calabi-Yau metric manifolds in the Lie algebroid setting.