Result: Conditions under which suboptimal nonlinear MPC is inherently robust

Title:
Conditions under which suboptimal nonlinear MPC is inherently robust
Source:
Systems & control letters. 60(9):747-755
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Automatique théorique. Systèmes, Control theory. Systems, Systèmes adaptatifs, Adaptative systems, Analyse des systèmes de commande, Control system analysis, Synthèse des systèmes de commande, Control system synthesis, Commande optimale, Optimal control, Calcul ensembliste, Set computation, Calcúlo conjunto, Commande MPC, Model predictive control, Control modelo predicativo, Commande boucle fermée, Closed feedback, Bucle realimentación cerrada, Commande non linéaire, Non linear control, Control no lineal, Commande robuste, Robust control, Control robusta, Commande sous optimale, Suboptimal control, Control subóptimo, Contrainte espace état, State constraint, Tensión espacio estado, Erreur estimation, Estimation error, Error estimación, Erreur mesure, Measurement error, Error medida, Estimation erreur, Error estimation, Estimación error, Estimation état, State estimation, Estimación estado, Faisabilité, Feasibility, Practicabilidad, Fonction Lyapunov, Lyapunov function, Función Lyapunov, Fonction coût, Cost function, Función coste, Fonction exponentielle, Exponential function, Función exponencial, Identification système, System identification, Identificación sistema, Méthode récursive, Recursive method, Método recursivo, Programmation non convexe, Non convex programming, Programación no convexa, Programme commande, Control program, Programa mando, Robustesse, Robustness, Robustez, Stabilité exponentielle, Exponential stability, Estabilidad exponencial, Stabilité robuste, Robust stability, Estabilidad robusta, Système non linéaire, Non linear system, Sistema no lineal, Difference inclusions, Inherent robustness, Lyapunov functions, Suboptimal model predictive control
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Dip, Ing. Chim., Chim. Ind. e Sc. Mat. (DICCISM), University of Pisa, Eisa, Italy
Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, United States
Computer Sciences Department, University of Wisconsin, Madison, WI, United States
ISSN:
0167-6911
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.24476069
Database:
PASCAL Archive

Further Information

We address the inherent robustness properties of nonlinear systems controlled by suboptimal model predictive control (MPC), i.e., when a suboptimal solution of the (generally nonconvex) optimization problem, rather than an element of the optimal solution set, is used for the control. The suboptimal control law is then a set-valued map, and consequently, the closed-loop system is described by a difference inclusion. Under mild assumptions on the system and cost functions, we establish nominal exponential stability of the equilibrium, and with a continuity assumption on the feasible input set, we prove robust exponential stability with respect to small, but otherwise arbitrary, additive process disturbances and state measurement/estimation errors. These results are obtained by showing that the suboptimal cost is a continuous exponential Lyapunov function for an appropriately augmented closed-loop system, written as a difference inclusion, and that recursive feasibility is implied by such (nominal) exponential cost decay. These novel robustness properties for suboptimal MPC are inherited also by optimal nonlinear MPC. We conclude the paper by showing that, in the absence of state constraints, we can replace the terminal constraint with an appropriate terminal cost, and the robustness properties are established on a set that approaches the nominal feasibility set for small disturbances. The somewhat surprising and satisfying conclusion of this study is that suboptimal MPC has the same inherent robustness properties as optimal MPC.