Result: Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques

Title:
Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques
Source:
Mathematical and computer modelling. 54(11-12):2889-2899
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique dans des espaces abstraits, Numerical analysis in abstract spaces, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Algorithme, Algorithm, Algoritmo, Analyse assistée, Computer aided analysis, Análisis asistido, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Echantillonnage, Sampling, Muestreo, Equation algébrique, Algebraic equation, Ecuación algebraica, Equation non linéaire, Non linear equation, Ecuación no lineal, Equation transcendante, Transcendental equation, Ecuación trascendente, Fonction coût, Cost function, Función coste, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Modèle mathématique, Mathematical model, Modelo matemático, Modèle simulation, Simulation model, Modelo simulación, Méthode optimisation, Optimization method, Método optimización, Méthode particulaire, Particle method, Método partícula, Méthode stochastique, Stochastic method, Método estocástico, Problème inverse, Inverse problem, Problema inverso, Programmation mathématique, Mathematical programming, Programación matemática, Solution globale, Global solution, Solución global, 49XX, 65C35, 65H20, 65J22, 65K10, 65Kxx, Inverse problems, Model reduction techniques, PSO, Uncertainty
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
University of Oviedo, Mathematics Department, Oviedo, Spain
Stanford University, Energy Resources Department, CA, United States
ISSN:
0895-7177
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24559723
Database:
PASCAL Archive

Further Information

Global optimization methods including particle swarm optimization are usually used to solve optimization problems when the number of parameters is low (hundreds). Also, to be able to find a good solution typically involves multiple evaluations of the objective (or cost) function. Thus, both a large number of parameters and very costly forward evaluations hamper the use of global algorithms in inverse problems. In this paper, we address the first problem showing that the sampling can be performed in a reduced model space. The reduction of the dimension is accomplished in this case by the principal component analysis computed on a set of scenarios that are built based on prior information using stochastic simulation techniques. The use of a reduced base helps to regularize the inverse problem and to find a set of equivalent models that fit the data within a prescribed tolerance, allowing uncertainty analysis around the minimum misfit solution. We show the application of this idea to a history matching problem of a synthetic oil reservoir, using different members of the PSO family to perform sampling on the reduced model space.