Result: On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms

Title:
On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms
Source:
Numerische Mathematik. 119(4):699-724
Publisher Information:
Heidelberg: Springer, 2011.
Publication Year:
2011
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Plans d'expériences et configurations, Designs and configurations, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Approximation numérique, Numerical approximation, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Approximation numérique, Numerical approximation, Aproximación numérica, Calcul variationnel, Variational calculus, Cálculo de variaciones, Cubature, Cubicación, Estimation erreur, Error estimation, Estimación error, Formule quadrature, Quadrature formula, Fórmula cuadratura, Méthode Newton, Newton method, Método Newton, Méthode gradient conjugué, Conjugate gradient method, Método gradiente conjugado, Méthode numérique, Numerical method, Método numérico, Méthode optimisation, Optimization method, Método optimización, Méthode stochastique, Stochastic method, Método estocástico, Opération arithmétique, Arithmetic operation, Operación aritmética, Polynôme, Polynomial, Polinomio, Problème non linéaire, Nonlinear problems, Programmation mathématique, Mathematical programming, Programación matemática, Sphère, Sphere, Esfera, Transformation Fourier rapide, Fast Fourier transformation, Transformación Fourier rápida, Variété mathématique, Manifold, Variedad matemática, 05Bxx, 41A55, 49XX, 58C15, 65C20, 65D32, 65K10, 65K15, 65Kxx
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany
ISSN:
0029-599X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.24765049
Database:
PASCAL Archive

Further Information

Spherical t-designs are point sets XM = {x1, ... , xM } ⊂ S2 which provide quadrature rules with equal weights for the sphere which are exact for polynomials up to degree t. In this paper we consider the problem of finding numerical spherical t-designs on the sphere S2 for high polynomial degree t ∈ ℕ. That is, we compute numerically local minimizers of a certain quadrature error At (XM). The quadrature error At was also used for a variational characterization of spherical t-designs by Sloan and Womersley (J Approx Theory 159:308-318, 2009). For the minimization problem we regard several nonlinear optimization methods on manifolds, like Newton and conjugate gradient methods. We show that by means of the nonequispaced fast spherical Fourier transforms we perform gradient and Hessian evaluations in O(t2 log t + M log2(1/ε)) arithmetic operations, where ε > 0 is a prescribed accuracy. Using these methods we present numerical spherical t-designs for t ≤ 1, 000, even in the case M ≈ 1/2t2.