Result: POSITIVE SHEAVES OF DIFFERENTIALS COMING FROM COARSE MODULI SPACES
Albert-Ludwigs-Universitat Freiburg Mathematisches Institut Eckerstrasse 1, 79104 Freiburg, Germany
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
On considère une famille projective lisse de variétés canoniquement polarisées sur une base quasi-projective lisse Y. Si la famille n'est pas iso-triviale, Viehweg et Zuo ont montré que toute bonne compactification de Y admet des formes pluricanoniques avec au plus des pôles logarithmiques le long du bord. Plus précisément leur résultat montre qu'une puissance symétrique suffisamment grande du faisceau des différentielles logarithmiques contient un sous-faisceau inversible dont la dimension de Kodaira-Iitaka est au moins égale à la variation de la famille. En suivant la construction de Viehweg-Zuo on montre que le faisceau inversible de Viehweg-Zuo provient, au moins génériquement, de l'espace de module grossier associé à la famille. Comme corollaire immédiat on obtient que la base d'une famille non-isotriviale ne peut pas être spéciale au sens de Campana.