Result: On the density of periodic configurations in strongly irreducible subshifts

Title:
On the density of periodic configurations in strongly irreducible subshifts
Source:
Nonlinearity (Bristol. Print). 25(7):2119-2131
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Ingegneria, Universita del Sannio, C.so Garibaldi 107, 82100 Benevento, Italy
Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René-Descartes, 67000 Strasbourg, France
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26131767
Database:
PASCAL Archive

Further Information

Let G be a residually finite group and let A be a finite set. We prove that if X ⊂ AG is a strongly irreducible subshift of finite type containing a periodic configuration then periodic configurations are dense in X. The density of periodic configurations implies in particular that every injective endomorphism of X is surjective and that the group of automorphisms of X is residually finite. We also introduce a class of subshifts X C Aℤ, including all strongly irreducible subshifts and all irreducible sofic subshifts, in which periodic configurations are dense.