Result: Estimating the Proportion of True Null Hypotheses in Nonparametric Exponential Mixture Model with Appication to the Leukemia Gene Expression Data
Zhongnan University of Economics and Law Wuhan College, Wuhan, Hubei, China
Institute of Biostatistics, School of Life Science, Fudan University, Shanghai, China
Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
We revisit the problem of estimating the proportion π of true null hypotheses where a large scale of parallel hypothesis tests are performed independently. While the proportion is a quantity of interest in its own right in applications, the problem has arisen in assessing or controlling an overall false discovery rate. On the basis of a Bayes interpretation of the problem, the marginal distribution of the p-value is modeled in a mixture of the uniform distribution (null) and a non-uniform distribution (alternative), so that the parameter π of interest is characterized as the mixing proportion of the uniform component on the mixture. In this article, a nonparametric exponential mixture model is proposed to fit the p-values. As an alternative approach to the convex decreasing mixture model, the exponential mixture model has the advantages of identifiability, flexibility, and regularity. A computation algorithm is developed. The new approach is applied to a leukemia gene expression data set where multiple significance tests over 3,051 genes are performed. The new estimate for π with the leukemia gene expression data appears to be about 10% lower than the other three estimates that are known to be conservative. Simulation results also show that the new estimate is usually lower and has smaller bias than the other three estimates.