Treffer: Estimating the Proportion of True Null Hypotheses in Nonparametric Exponential Mixture Model with Appication to the Leukemia Gene Expression Data

Title:
Estimating the Proportion of True Null Hypotheses in Nonparametric Exponential Mixture Model with Appication to the Leukemia Gene Expression Data
Source:
Communications in statistics. Simulation and computation. 41(8-10):1580-1592
Publisher Information:
Colchester: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Inférence paramétrique, Parametric inference, Inférence non paramétrique, Nonparametric inference, Analyse multivariable, Multivariate analysis, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Algorithme EM, EM algorithm, Algoritmo EM, Analyse multivariable, Multivariate analysis, Análisis multivariable, Distribution statistique, Statistical distribution, Distribución estadística, Erreur systématique, Bias, Error sistemático, Estimation Bayes, Bayes estimation, Estimación Bayes, Estimation biaisée, Biased estimation, Estimación sesgada, Estimation non paramétrique, Non parametric estimation, Estimación no paramétrica, Estimation statistique, Statistical estimation, Estimación estadística, Identifiabilité, Identifiability, Identificabilidad, Leucémie, Leukemia, Leucemia, Loi marginale, Marginal distribution, Ley marginal, Loi uniforme, Uniform distribution, Ley uniforme, Mélange loi probabilité, Mixed distribution, Mezcla ley probabilidad, Mélangeage, Mixing, Mezclado, Méthode statistique, Statistical method, Método estadístico, Simulation numérique, Numerical simulation, Simulación numérica, Test hypothèse, Hypothesis test, Test hipótesis, Test signification, Significance test, Test significación, Test statistique, Statistical test, Test estadístico, Théorie approximation, Approximation theory, 37A25, 62E17, 62F03, 62G10, 62H15, Estimation paramétrique, Modèle exponentiel, Exponential model, Test multiple, Multiple test, Valeur P, P value, 62F12, Aitken's acceleration rule, CNM algorithm, FDR, Multiple testing, Nonparametric mixture model, Primary 62F05, Secondary 62P10
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Statistics, School of Science, Wuhan University of Technology, Wuhan, Hubei, China
Zhongnan University of Economics and Law Wuhan College, Wuhan, Hubei, China
Institute of Biostatistics, School of Life Science, Fudan University, Shanghai, China
Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, United States
ISSN:
0361-0918
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26164009
Database:
PASCAL Archive

Weitere Informationen

We revisit the problem of estimating the proportion π of true null hypotheses where a large scale of parallel hypothesis tests are performed independently. While the proportion is a quantity of interest in its own right in applications, the problem has arisen in assessing or controlling an overall false discovery rate. On the basis of a Bayes interpretation of the problem, the marginal distribution of the p-value is modeled in a mixture of the uniform distribution (null) and a non-uniform distribution (alternative), so that the parameter π of interest is characterized as the mixing proportion of the uniform component on the mixture. In this article, a nonparametric exponential mixture model is proposed to fit the p-values. As an alternative approach to the convex decreasing mixture model, the exponential mixture model has the advantages of identifiability, flexibility, and regularity. A computation algorithm is developed. The new approach is applied to a leukemia gene expression data set where multiple significance tests over 3,051 genes are performed. The new estimate for π with the leukemia gene expression data appears to be about 10% lower than the other three estimates that are known to be conservative. Simulation results also show that the new estimate is usually lower and has smaller bias than the other three estimates.