Result: Hankel determinants of sums of consecutive weighted Schröder numbers

Title:
Hankel determinants of sums of consecutive weighted Schröder numbers
Source:
Linear algebra and its applications. 437(9):2285-2299
Publisher Information:
Amsterdam: Elsevier, 2012.
Publication Year:
2012
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Tawain, Province of China
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Tawain, Province of China
ISSN:
0024-3795
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26255776
Database:
PASCAL Archive

Further Information

We consider weighted large and small Schröder paths with up steps (1, 1), down steps (1, ―1) assigned the weight of 1 and with level steps (2, 0) assigned the weight of t, where t is a real number. The weight of a path is the product of the weights of all its steps. Let r(t)ℓ and s(t)ℓ be the total weight of all weighted large and small Schröder paths from (0. 0) to (2ℓ, 0), respectively. For constants α, β, we derive the generating functions and the explicit formulae for the determinants of the Hankel matrices (ar(t)i+j―2 + βr(t)i+j―1)ni,j=1, (αr(t)i+j―1 + βr(t)i+j)ni,j=1, (αs(t)i+j―2 + βs(t)i+j―1)ni,j=1 and (αs(t)i+j―1 βs(t)i+j)ni,j=1 combinatorially via suitable lattice path models.