Result: Banding, excitability and chaos in active nematic suspensions
Department of Physics, Harvard University, Cambridge, MA 02138, United States
Martin A Fisher School of Physics, Brandeis University, Waltham, MA 02454, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Further Information
Motivated by the observation of highly unstable flowing states in suspensions of microtubules and kinesin, we analyse a model of mutually propelled filaments suspended in a solvent. The system undergoes a mean-field isotropic―nematic transition for large enough filament concentrations when the nematic order parameter is allowed to vary in space and time. We analyse the model in two contexts: a quasi-one-dimensional channel with no-slip walls and a two-dimensional box with periodic boundaries. Using stability analysis and numerical calculations we show that the interplay between non-uniform nematic order, activity, and flow results in a variety of complex scenarios that include spontaneous banded laminar flow, relaxation oscillations and chaos.