Result: Banding, excitability and chaos in active nematic suspensions

Title:
Banding, excitability and chaos in active nematic suspensions
Source:
Nonlinearity (Bristol. Print). 25(8):2245-2269
Publisher Information:
Bristol: Institute of Physics, 2012.
Publication Year:
2012
Physical Description:
print, 59 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Topologie algébrique, Algebraic topology, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique dans des espaces abstraits, Numerical analysis in abstract spaces, Physique, Physics, Generalites, General, Méthodes mathématiques en physique, Mathematical methods in physics, Divers, Other topics in mathematical methods in physics, Activité, Activity, Actividad, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Analyse numérique, Numerical analysis, Análisis numérico, Calcul 1 dimension, One-dimensional calculations, Calcul 2 dimensions, Two-dimensional calculations, Champ isotrope, Isotropic field, Campo isótropo, Chaos, Caos, Chenal, Channel, Canal, Concentration, Concentración, Ecoulement laminaire, Laminar flow, Flujo laminar, Ecoulement uniforme, Uniform flow, Flujo uniforme, Espace temps, Space time, Espacio tiempo, Estimation moyenne, Mean estimation, Estimación promedio, Excitabilité, Excitability, Excitabilidad, Glissement, Slip, Deslizamiento, Observation, Observación, Paramètre ordre, Order parameter, Parámetro orden, Paroi, Wall, Pared, Physique mathématique, Mathematical physics, Física matemática, Stabilité numérique, Numerical stability, Estabilidad numérica, Suspension, Suspensión, Variété, Variety, Variedad, 34C26, 55P40, 65J05, 65Jxx, Analyse stabilité
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
Department of Physics, Harvard University, Cambridge, MA 02138, United States
Martin A Fisher School of Physics, Brandeis University, Waltham, MA 02454, United States
ISSN:
0951-7715
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.26259452
Database:
PASCAL Archive

Further Information

Motivated by the observation of highly unstable flowing states in suspensions of microtubules and kinesin, we analyse a model of mutually propelled filaments suspended in a solvent. The system undergoes a mean-field isotropic―nematic transition for large enough filament concentrations when the nematic order parameter is allowed to vary in space and time. We analyse the model in two contexts: a quasi-one-dimensional channel with no-slip walls and a two-dimensional box with periodic boundaries. Using stability analysis and numerical calculations we show that the interplay between non-uniform nematic order, activity, and flow results in a variety of complex scenarios that include spontaneous banded laminar flow, relaxation oscillations and chaos.