Result: Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
This paper is concerned with multidimensional exponential fitting modified Runge-Kutta-Nyström (MEFMRKN) methods for the system of oscillatory second-order differential equations q(t) + Mq(t) = f(q(t)), where M is a d x d symmetric and positive semi-definite matrix and f (q) is the negative gradient of a potential scalar U(q). We formulate MEFMRKN methods and show clearly the relationship between MEFMRKN methods and multidimensional extended Runge-Kutta-Nystrom (ERKN) methods proposed by Wu et al. (Comput. Phys. Comm. 181:1955―1962, 2010). Taking into account the fact that the oscillatory system is a separable Hamiltonian system with Hamiltonian H(p, q) = 1/2 pT p + 1/2qT Mq + U(q), we derive the symplecticity conditions for the MEFMRKN methods. Two explicit symplectic MEFMRKN methods are proposed. Numerical experiments accompanied demonstrate that our explicit symplectic MEFMRKN methods are more efficient than some well-known numerical methods appeared in the scientific literature.