Result: CONSTRUCTION OF ITERATIVE METHODS FOR VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS
Title:
CONSTRUCTION OF ITERATIVE METHODS FOR VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS
Authors:
Source:
Numerical functional analysis and optimization. 33(10-12):1250-1267
Publisher Information:
Philadelphia, PA: Taylor & Francis, 2012.
Publication Year:
2012
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Algèbre linéaire numérique, Numerical linear algebra, Algebra lineal numérica, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Convergence forte, Strong convergence, Convergencia fuerte, Espace Hilbert, Hilbert space, Espacio Hilbert, Inégalité variationnelle, Variational inequality, Desigualdad variacional, Méthode itérative, Iterative method, Método iterativo, Méthode optimisation, Optimization method, Método optimización, Point fixe, Fix point, Punto fijo, Programmation mathématique, Mathematical programming, Programación matemática, Système linéaire, Linear system, Sistema lineal, 37C25, 46Cxx, 49J40, 49R50, 58E35, 65F08, 65F10, 65K10, 65K15, 65Kxx, 47H05, 47J05, 47J25, Fixed point, Inverse-strongly monotone mapping, Nonexpansive mapping
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Tianjin Polytechnic University, Tianjin, China
Department of Information Management, Cheng Shiu University, Kaohsiung, Tawain, Province of China
Department of Mathematics, King Abdul Aziz University, Jeddai, Saudi Arabia
Department of Information Management, Cheng Shiu University, Kaohsiung, Tawain, Province of China
Department of Mathematics, King Abdul Aziz University, Jeddai, Saudi Arabia
ISSN:
0163-0563
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26700862
Database:
PASCAL Archive
Further Information
In this article, we first introduce two iterative methods for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. Then we show that the proposed iterative methods converge strongly to a minimum norm element of two sets.