Result: A HLLC SCHEME FOR NONCONSERVATIVE HYPERBOLIC PROBLEMS. APPLICATION TO TURBIDITY CURRENTS WITH SEDIMENT TRANSPORT

Title:
A HLLC SCHEME FOR NONCONSERVATIVE HYPERBOLIC PROBLEMS. APPLICATION TO TURBIDITY CURRENTS WITH SEDIMENT TRANSPORT
Source:
Modélisation mathématique et analyse numérique (Imprimé). 47(1):1-32
Publisher Information:
Les Ulis: EDP Sciences, 2013.
Publication Year:
2013
Physical Description:
print, 33 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Dpto. de Análisis Matemático, Facultad de Ciencias, Universidad de Málga, Campus de Teatinos, s/n, 29071 Malaga, Spain
Dpto. Matematica Aplicada I, ETS Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes No. 2, 41012 Sevilla, Spain
Dpto. de Matemáticas, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
ISSN:
0764-583X
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.26900873
Database:
PASCAL Archive

Further Information

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity preserving property of the corresponding numerical methods are presented. The numerical results provided by the two HLLC solvers are compared between them and also with those obtained with a Roe-type method in a number of Id and 2d test problems. This comparison shows that, while the quality of the numerical solutions is comparable, the computational cost of the HLLC solvers is lower, as only some partial information of the eigenstructure of the matrix system is needed.