Result: Optimal 2-D (n × m, 3, 2, 1)-optical Orthogonal Codes
Title:
Optimal 2-D (n × m, 3, 2, 1)-optical Orthogonal Codes
Authors:
Source:
IEEE transactions on information theory. 59(1):710-725
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2013.
Publication Year:
2013
Physical Description:
print, 62 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Théorie du signal et des communications, Signal and communications theory, Codage, codes, Coding, codes, Télécommunications, Telecommunications, Systèmes, réseaux et services de télécommunications, Systems, networks and services of telecommunications, Transmission et modulation (techniques et équipements), Transmission and modulation (techniques and equipments), Télécommunications optiques, Optical telecommunications, Accès multiple répartition code, Code division multiple access, Acceso múltiple división código, Autocorrélation, Autocorrelation, Autocorrelación, Code orthogonal, Orthogonal code, Código ortogonal, Corrélation croisée, Cross correlation, Correlación cruzada, Modèle 2 dimensions, Two dimensional model, Modelo 2 dimensiones, Méthode combinatoire, Combinatorial method, Método combinatorio, Télécommunication optique, Optical telecommunication, Telecomunicación óptica, Télécommunication sans fil, Wireless telecommunication, Telecomunicación sin hilo, -Group divisible design (GDD), optical code-division multiple access (OCDMA), optical orthogonal code, optimal, two-dimensional optical orthogonal code
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Ningbo University, Ningbo 315211, China
Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, China
Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, China
ISSN:
0018-9448
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.27078053
Database:
PASCAL Archive
Further Information
Optical orthogonal codes are commonly used as signature codes for optical code-division multiple access systems. So far, research on 2-D optical orthogonal codes has mainly concentrated on the same autocorrelation and cross-correlation constraints. In this paper, we are concerned about optimal 2-D optical orthogonal codes with the autocorrelation λa and the cross-correlation 1. Some combinatorial constructions for 2-D (n × m, k, λa,1)-optical orthogonal codes are presented. When k = 3 and λa = 2, the exact number of codewords of an optimal 2-D (n x m, 3, 2, 1)-optical orthogonal code is determined for any positive integers n ≡ 0,1,3,6,9,10 (mod 12) and m = 2 (mod 4).