Result: Permutation codes with specified packing radius

Title:
Permutation codes with specified packing radius
Source:
Designs, codes and cryptography. 69(1):95-106
Publisher Information:
New York, NY: Springer, 2013.
Publication Year:
2013
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Security, safety, Sécurité (multidisciplinaire, général), Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Codage, codes, Coding, codes, Cryptographie, Cryptography, Clique graphe, Graph clique, Code Hamming, Hamming code, Código Hamming, Code correcteur erreur, Error correcting code, Código corrector error, Code linéaire, Linear code, Código lineal, Code parfait, Perfect code, Código perfecto, Combinatoire énumérative, Enumerative combinatorics, Distance Hamming, Hamming distance, Distancia Hamming, Distance minimale, Minimal distance, Distancia mínima, Décodage, Decoding, Desciframiento, Groupe automorphisme, Automorphism group, Grupo automorfismo, Modélisation, Modeling, Modelización, Permutation, Permutación, Plus proche voisin, Nearest neighbour, Vecino más cercano, Recouvrement, Overlay, Recubrimiento, Réseau électrique, Electrical network, Red eléctrica, Table codage, Codebook, Tabla codificación, Appariement chaîne, String matching, Emparejamiento de Cadenas, 05A05, 05E20, 94B60, Automorphism groups, Clique search, Packing radius, Permutation codes
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Division of Mathematics and Statistics, University of Glamorgan, Pontypridd CF37 1DL, Wales, United Kingdom
Istituto Dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Galleria 2, 6928 Manno, Switzerland
ISSN:
0925-1022
Rights:
Copyright 2014 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Telecommunications and information theory
Accession Number:
edscal.27627607
Database:
PASCAL Archive

Further Information

Most papers on permutation codes have concentrated on the minimum Hamming distance of the code. An (n, d) permutation code (or permutation array) is simply a set of permutations on n elements in which the Hamming distance between any pair of distinct permutations (or codewords) is at least d. An (n, 2e + 1) or (n, 2e + 2) permutation code is able to correct up to e errors. These codes have a potential application to powerline communications. It is known that in an (n, 2e) permutation code the balls of radius e surrounding the codewords may all be pairwise disjoint, but usually some overlap. Thus an (n, 2e) permutation code is generally unable to correct e errors using nearest neighbour decoding. On the other hand, if the packing radius of the code is defined as the largest value of e for which the balls of radius e are all pairwise disjoint, a permutation code with packing radius e can be denoted by [n, e]. Such a permutation code can always correct e errors. In this paper it is shown that, in almost all cases considered, the number of codewords in the best [n, e] code found is substantially greater than the largest number of codewords in the best known (n, 2e + 1) code. Thus the packing radius more accurately specifies the requirement for an e-error-correcting permutation code than does the minimum Hamming distance. The techniques used include construction by automorphism group and several variations of clique search They are enhanced by two theoretical results which make the computations feasible.