Result: Resonant States of the H―3 Molecule and Its Isotopologues D2H― and H2D―

Title:
Resonant States of the H―3 Molecule and Its Isotopologues D2H― and H2D―
Source:
The journal of physical chemistry. A. 117(39):9941-9949
Publisher Information:
Washington, DC: American Chemical Society, 2013.
Publication Year:
2013
Physical Description:
print, 36 ref
Original Material:
INIST-CNRS
Time:
3450, 9838
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Laboratoire de Genie des Procédés et Matériaux, Ecole Centrale de Paris, Bât. Dumas, 92295 Châtenay-Malabry, France
Laboratoire Aimé Cotton, CNRS/Univ Paris-Sud/ENS Cachan, Bât. 505, Campus d'Orsay, 91405 Orsay, France
ISSN:
1089-5639
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy

Atomic and molecular physics
Accession Number:
edscal.27895013
Database:
PASCAL Archive

Further Information

Using the ground potential energy surface [Ayouz, M.; et al. J. Chem. Phys. 2010, 132 194309] of the H―3 molecule, we have determined the energies and widths of the complex resonant levels of H―3 located up to 4000 cm―1 above the dissociation limit H― + H2(vd = 0,jd = 0). Bound and resonant levels of the H2D― and D2H― isotopologues have been also characterized within the same energy range. The method combines the hyperspherical adiabatic approach, slow variable discretization method, and complex absorbing potential. These results represent the first step for modeling the dynamics of the associated diatom―negative ion collision at low energy involving rotational quenching of the diatom and reactive nucleus exchange via the weak tunneling effect through the potential barrier of the potential energy surface.