Result: Federating clustering and cluster labelling capabilities with a single approach based on feature maximization: French verb classes identification with IGNGF neural clustering : Advances in Self-Organizing Maps

Title:
Federating clustering and cluster labelling capabilities with a single approach based on feature maximization: French verb classes identification with IGNGF neural clustering : Advances in Self-Organizing Maps
Source:
Neurocomputing (Amsterdam). 147:136-146
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 40 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance et synthèse de la parole et du son. Linguistique, Speech and sound recognition and synthesis. Linguistics, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme apprentissage, Learning algorithm, Algoritmo aprendizaje, Algorithme en ligne, Online algorithm, Algoritmo en línea, Amas, Cluster, Montón, Analyse amas, Cluster analysis, Analisis cluster, Analyse donnée, Data analysis, Análisis datos, Analyse qualitative, Qualitative analysis, Análisis cualitativo, Analyse quantitative, Quantitative analysis, Análisis cuantitativo, Analyse syntaxique, Syntactic analysis, Análisis sintáxico, Classification non supervisée, Unsupervised classification, Clasificación no supervisada, Critère sélection, Selection criterion, Criterio selección, Etiquetage, Labelling, Etiquetaje, Grille, Grid, Rejilla, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Langage naturel, Natural language, Lenguaje natural, Linguistique, Linguistics, Linguística, Méthode différentielle, Differential method, Método diferencial, Relation syntaxique, Syntactic relation, Relación sintáctica, Réseau neuronal, Neural network, Red neuronal, Sémantique, Semantics, Semántica, Traitement langage, Language processing, Tratamiento lenguaje, Verbe, Verb, Verbo, Capabilité objet, Object-capabilities, Capabilidad objeto, Cluster labelling, Clustering, Incremental learning, NLP, Neural networks, Verb classification
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Synalp-LORIA, France
University of Strasbourg, France
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28836738
Database:
PASCAL Archive

Further Information

Classifications which group together verbs and a set of shared syntactic and semantic properties have proven to be useful in both linguistics and Natural Language Processing tasks. However, most existing approaches for automatically acquiring verb classes fail to associate the verb classes produced with an explicit characterisation of the syntactic and semantic properties shared by the class elements. We propose a novel approach to verb clustering which addresses this shortcoming and permits building verb classifications whose classes group together verbs, subcategorisation frames and thematic grids. Our approach involves the use of a recent neural clustering method called IGNGF (Incremental Growing Neural Gas with Feature maximization). The use of a standard distance measure for determining a winner is replaced in IGNGF by feature maximisation measure relying on the features of the data that are associated with clusters during learning. A main advantage of the method is that maximised features used by IGNGF during learning can also be exploited in a final step for accurately labelling the resulting clusters. In this paper, we exploit IGNGF for the unsupervised classification of French verbs and evaluate the obtained clusters (i.e., verb classes) in two different ways. The first way is a quantitative analysis of the clustering process relying on a usual gold standard and on complementary unbiased clustering quality indexes. The second way is a qualitative analysis of the cluster labelling process. Relying on an adapted gold standard, we evaluate the capacity of the IGNGF clusters labels (i.e., subcategorisation frames and thematic grids) to be exploited for bootstraping a VerbNet-like classification for French. Both analyses clearly highlight the advantages of the approach.