Result: Compression of hyperspectral remote sensing images by tensor approach

Title:
Compression of hyperspectral remote sensing images by tensor approach
Source:
Neurocomputing (Amsterdam). 147:358-363
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 38 ref
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Systèmes d'information. Bases de données, Information systems. Data bases, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Terre, ocean, espace, Earth, ocean, space, Geophysique externe, External geophysics, Télédétection, photointerprétation, Remote sensing, photointerpretation, Analyse n dimensionnelle, Multidimensional analysis, Análisis n dimensional, Capteur imagerie hyperspectral, Hyperspectral imaging sensor, Sensor hiperespectral de formación de imágenes, Cube, Cubo, Détecteur image, Image sensor, Detector imagen, Détection cible, Target detection, Detección blanco, Entrepôt donnée, Data warehouse, Almacen dato, Hypercube, Hipercubo, Image niveau gris, Grey level image, Imagen nivel gris, Qualité information, Information quality, Calidad de la información, Résultat expérimental, Experimental result, Resultado experimental, Télédétection multispectrale, multispectral remote sensing, Teledetección multiespectral, Intégrité donnée, Data integrity, Integridad de datos, Compression, Hyperspectral image, Spectral unmixing, Tensor decomposition
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Computer School, Wuhan University, Wuhan 430072, China
State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
ISSN:
0925-2312
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

External geophysics
Accession Number:
edscal.28836760
Database:
PASCAL Archive

Further Information

Whereas the transform coding algorithms have been proved to be efficient and practical for grey-level and color images compression, they could not directly deal with the hyperspectral images (HSI) by simultaneously considering both the spatial and spectral domains of the data cube. The aim of this paper is to present an HSI compression and reconstruction method based on the multi-dimensional or tensor data processing approach. By representing the observed hyperspectral image cube to a 3-order-tensor, we introduce a tensor decomposition technology to approximately decompose the original tensor data into a core tensor multiplied by a factor matrix along each mode. Thus, the HSI is compressed to the core tensor and could be reconstructed by the multi-linear projection via the factor matrices. Experimental results on particular applications of hyperspectral remote sensing images such as unmixing and detection suggest that the reconstructed data by the proposed approach significantly preserves the HSI's data quality in several aspects.