Result: DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets

Title:
DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets
Authors:
Source:
Expert systems with applications. 42(1):51-66
Publisher Information:
Amsterdam: Elsevier, 2015.
Publication Year:
2015
Physical Description:
print, 1 p.1/4
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Algorithme flou, Fuzzy algorithm, Algoritmo borroso, Algorithme réparti, Distributed algorithm, Algoritmo repartido, Amas, Cluster, Montón, Analyse amas, Cluster analysis, Analisis cluster, Analyse donnée, Data analysis, Análisis datos, Base de connaissances, Knowledge base, Base conocimiento, Base de données répartie, Distributed database, Base repartida dato, Découverte connaissance, Knowledge discovery, Descubrimiento conocimiento, Efficacité, Efficiency, Eficacia, Ensemble flou, Fuzzy set, Conjunto difuso, Fouille donnée, Data mining, Busca dato, Logique floue, Fuzzy logic, Lógica difusa, Modélisation, Modeling, Modelización, Pertinence, Relevance, Pertinencia, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Résultat expérimental, Experimental result, Resultado experimental, Science information, Information science, Ciencia información, Traitement donnée, Data processing, Tratamiento datos, Informatique dans les nuages, Cloud computing, Computación en nube, Clustering quality, Distributed clustering, Facilitator model, Fuzzy clustering, Picture fuzzy sets
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
VNU University of Science, Vietnam National University, Viet Nam
ISSN:
0957-4174
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.28843381
Database:
PASCAL Archive

Further Information

Fuzzy clustering is considered as an important tool in pattern recognition and knowledge discovery from a database; thus has been being applied broadly to various practical problems. Recent advances in data organization and processing such as the cloud computing technology which are suitable for the management, privacy and storing big datasets have made a significant breakthrough to information sciences and to the enhancement of the efficiency of fuzzy clustering. Distributed fuzzy clustering is an efficient mining technique that adapts the traditional fuzzy clustering with a new storage behavior where parts of the dataset are stored in different sites instead of the centralized main site. Some distributed fuzzy clustering algorithms were presented including the most effective one ― the CDFCM of Zhou et al. (2013). Based upon the observation that the communication cost and the quality of results in CDFCM could be ameliorated through the integration of a distributed picture fuzzy clustering with the facilitator model, in this paper we will present a novel distributed picture fuzzy clustering method on picture fuzzy sets so-called DPFCM. Experimental results on various datasets show that the clustering quality of DPFCM is better than those of CDFCM and relevant algorithms.