Result: Stock trading rule discovery with an evolutionary trend following model
School of Management, Guangdong University of Foreign Studies, Higher Education Mega Center, Guangzhou 510006, China
School of Business, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
Department of Management and Marketing, The Hong Kong Polytechnic University, Kowloon, Hong-Kong
University of Kansas Medical Center, Kansas City, KS 66160, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Further Information
Evolutionary learning is one of the most popular techniques for designing quantitative investment (QI) products. Trend following (TF) strategies, owing to their briefness and efficiency, are widely accepted by investors. Surprisingly, to the best of our knowledge, no related research has investigated TF investment strategies within an evolutionary learning model. This paper proposes a hybrid long-term and short-term evolutionary trend following algorithm (eTrend) that combines TF investment strategies with the extended Classifier Systems (XCS). The proposed eTrend algorithm has two advantages: (1) the combination of stock investment strategies (i.e., TF) and evolutionary learning (i.e., XCS) can significantly improve computation effectiveness and model practicability, and (2) XCS can automatically adapt to market directions and uncover reasonable and understandable trading rules for further analysis, which can help avoid the irrational trading behaviors of common investors. To evaluate eTrend, experiments are carried out using the daily trading data stream of three famous indexes in the Shanghai Stock Exchange. Experimental results indicate that eTrend outperforms the buy-and-hold strategy with high Sortino ratio after the transaction cost. Its performance is also superior to the decision tree and artificial neural network trading models. Furthermore, as the concept drift phenomenon is common in the stock market, an exploratory concept drift analysis is conducted on the trading rules discovered in bear and bull market phases. The analysis revealed interesting and rational results. In conclusion, this paper presents convincing evidence that the proposed hybrid trend following model can indeed generate effective trading guidance for investors.