Result: Memetic search for the quadratic assignment problem
LERIA, Université d'Angers, 2 bd Lavoisier, 49045 Angers, France
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Further Information
The quadratic assignment problem (QAP) is one of the most studied NP-hard problems with various practical applications. In this work, we propose a powerful population-based memetic algorithm (called BMA) for QAP. BMA integrates an effective local optimization algorithm called Breakout Local Search (BLS) within the evolutionary computing framework which itself is based on a uniform crossover, a fitness-based pool updating strategy and an adaptive mutation procedure. Extensive computational studies on the set of 135 well-known benchmark instances from the QAPLIB revealed that the proposed algorithm is able to attain the best-known results for 133 instances and thus competes very favorably with the current most effective QAP approaches. A study of the search landscape and crossover operators is also proposed to shed light on the behavior of the algorithm.