Result: From a Closed Piecewise Geodesic to a Constriction on a Closed Triangulated Surface

Title:
From a Closed Piecewise Geodesic to a Constriction on a Closed Triangulated Surface
Contributors:
Virtual environments for animation and image synthesis of natural objects (EVASION), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université Grenoble Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des images et des signaux (LIS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), J. Rokne, W. Wang, R. Klein
Source:
Pacific Graphics Conference on Computer Graphics and Applications. :394-398
Publisher Information:
CCSD; IEEE Computer Society, 2003.
Publication Year:
2003
Collection:
collection:UGA
collection:IMAG
collection:CNRS
collection:INRIA
collection:UNIV-GRENOBLE1
collection:INPG
collection:INRIA-RHA
collection:LIS
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:INRIA-RENGRE
collection:TEST-UGA
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00001145v1
Database:
HAL

Further Information

Constrictions on a surface are defined as simple closed curves whose length is locally minimal. In particular, constrictions are periodic geodesics. We use constrictions in order to segment objects. In [Hetroy and Attali, VisSym 2003], we proposed an approach based on progressive surface simplification and local geodesic computation. The drawback of this approach is that constrictions are approximated by closed piecewise geodesics which are not necessarily periodic geodesics. In this paper, we compute constrictions starting from the closed piecewise geodesics previously computed and moving them on the surface. We compare the location of the initial closed piecewise geodesics to the location of the constrictions. Finally, we define and compute different types of constrictions on a surface.