Result: Structural Differences Between Two Graphs through Hierarchies

Title:
Structural Differences Between Two Graphs through Hierarchies
Contributors:
Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Graph Visualization and Interactive Exploration (GRAVITE), Université Sciences et Technologies - Bordeaux 1 (UB)-Centre Inria de l'Université de Bordeaux, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Source:
Graphics Interface. :87-94
Publisher Information:
CCSD, 2009.
Publication Year:
2009
Collection:
collection:CNRS
collection:INRIA
collection:ENSEIRB
collection:INRIA-BORDEAUX
collection:UNIV-BORDEAUX
collection:INRIA_TEST
collection:TESTALAIN1
collection:TESTBORDEAUX
collection:INRIA2
collection:UNIVERSITE-BORDEAUX
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00413854v1
Database:
HAL

Further Information

This paper presents a technique for visualizing the differences between two graphs. The technique assumes that a unique labeling of the nodes for each graph is available, where if a pair of labels match, they correspond to the same node in both graphs. Such labeling often exists in many application areas: IP addresses in computer networks, namespaces, class names, and function names in software engineering, to name a few. As many areas of the graph may be the same in both graphs, we visualize large areas of difference through a graph hierarchy. We introduce a path-preserving coarsening technique for degree one nodes of the same classification. We also introduce a path-preserving coarsening technique based on betweenness centrality that is able to illustrate major differences between two graphs.