Result: Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions

Title:
Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions
Contributors:
Solvers for Algebraic Systems and Applications (SALSA), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Key Laboratory of Mathematics Mechanization (KLMM), Chinese Academy of Sciences [Changchun Branch] (CAS)-Institute of Systems Science (ISS), China-Academy of Mathematics and Systems Science [Beijing], ANR-09-BLAN-0371,EXACTA,Calcul exact ou certifié avec des systèmes algébriques(2009)
Source:
SIAM Journal on Optimization. 20(6):2876-2889
Publisher Information:
CCSD; Society for Industrial and Applied Mathematics, 2010.
Publication Year:
2010
Collection:
collection:UPMC
collection:CNRS
collection:INRIA
collection:INRIA-ROCQ
collection:INRIA_TEST
collection:TESTALAIN1
collection:LIP6
collection:INRIA2
collection:TDS-MACS
collection:UPMC_POLE_1
collection:SORBONNE-UNIVERSITE
collection:SU-SCIENCES
collection:SU-TI
collection:ANR
collection:ALLIANCE-SU
Original Identifier:
HAL:
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
1052-6234
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1137/090772459
DOI:
10.1137/090772459
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00419983v1
Database:
HAL

Further Information

Let ${\cal P}=\{h_1, \ldots, h_s\}\subset \Z[Y_1, \ldots, Y_k]$, $D\geq \deg(h_i)$ for $1\leq i \leq s$, $\sigma$ bounding the bit length of the coefficients of the $h_i$'s, and $\Phi$ be a quantifier-free ${\cal P}$-formula defining a convex semi-algebraic set. We design an algorithm returning a rational point in ${\cal S}$ if and only if ${\cal S}\cap \Q\neq\emptyset$. It requires $\sigma^{\bigO(1)}D^{\bigO(k^3)}$ bit operations. If a rational point is outputted its coordinates have bit length dominated by $\sigma D^{\bigO(k^3)}$. Using this result, we obtain a procedure deciding if a polynomial $f\in \Z[X_1, \ldots, X_n]$ is a sum of squares of polynomials in $\Q[X_1, \ldots, X_n]$. Denote by $d$ the degree of $f$, $\tau$ the maximum bit length of the coefficients in $f$, $D={{n+d}\choose{n}}$ and $k\leq D(D+1)-{{n+2d}\choose{n}}$. This procedure requires $\tau^{\bigO(1)}D^{\bigO(k^3)}$ bit operations and the coefficients of the outputted polynomials have bit length dominated by $\tau D^{\bigO(k^3)}$.