Result: Delay-Tolerant Collaborative Filtering

Title:
Delay-Tolerant Collaborative Filtering
Contributors:
Mobile Computing and Communication Research Lab, Université du Luxembourg = University of Luxembourg = Universität Luxemburg (uni.lu), Management of dynamic networks and services (MADYNES), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Source:
MobiWac 2009 - 7th ACM International Symposium on Mobility Management and Wireless Access.
Publisher Information:
CCSD; ACM, 2009.
Publication Year:
2009
Collection:
collection:CNRS
collection:INRIA
collection:INPL
collection:INRIA-LORRAINE
collection:LORIA2
collection:INRIA-NANCY-GRAND-EST
collection:TESTALAIN1
collection:UNIV-LORRAINE
collection:INRIA2
collection:LORIA
collection:AM2I-UL
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1145/1641776.1641795
DOI:
10.1145/1641776.1641795
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00433769v1
Database:
HAL

Further Information

Recommender systems using collaborative filtering are a well-established technique to overcome information overload in today's digital society. Currently, predominant collaborative filtering systems mostly depend on huge centralized databases to store user preferences and furthermore are only available when connected to Internet. In this paper, we consider an incremental recommender system for highly dynamic mobile environments where no central global knowledge is available and communication links are rather unreliable in comparison to static networks. We present an algorithm that aims to reach a reasonable prediction coverage and accuracy while keeping the amount of additional network overhead as small as possible, maximizing the performance of our system. For this purpose, the presented algorithm is based on a delay-tolerant broadcasting mechanism on top of a weighted cluster topology. Evaluation results show that in terms of accuracy and coverage the results of the presented algorithm converge on those obtained from a global knowledge scenario, even in the case of message loss.