American Psychological Association 6th edition

Conte, A., Grossi, R., Kobayashi, Y., Kurita, K., Rucci, D., Uno, T., & Wasa, K. (2025). Enumerating Graphlets with Amortized Time Complexity Independent of Graph Size. Algorithmica, 87(9), 1247-1273. https://doi.org/10.1007/s00453-025-01312-0

ISO-690 (author-date, English)

CONTE, Alessio, GROSSI, Roberto, KOBAYASHI, Yasuaki, KURITA, Kazuhiro, RUCCI, Davide, UNO, Takeaki and WASA, Kunihiro, 2025. Enumerating Graphlets with Amortized Time Complexity Independent of Graph Size. Algorithmica. 1 September 2025. Vol. 87, no. 9, p. 1247-1273. DOI 10.1007/s00453-025-01312-0.

Modern Language Association 9th edition

Conte, A., R. Grossi, Y. Kobayashi, K. Kurita, D. Rucci, T. Uno, and K. Wasa. “Enumerating Graphlets With Amortized Time Complexity Independent of Graph Size”. Algorithmica, vol. 87, no. 9, Sept. 2025, pp. 1247-73, https://doi.org/10.1007/s00453-025-01312-0.

Mohr Siebeck - Recht (Deutsch - Österreich)

Conte, Alessio/Grossi, Roberto/Kobayashi, Yasuaki/Kurita, Kazuhiro/Rucci, Davide/Uno, Takeaki et al.: Enumerating Graphlets with Amortized Time Complexity Independent of Graph Size, Algorithmica 2025, 1247-1273.

Emerald - Harvard

Conte, A., Grossi, R., Kobayashi, Y., Kurita, K., Rucci, D., Uno, T. and Wasa, K. (2025), “Enumerating Graphlets with Amortized Time Complexity Independent of Graph Size”, Algorithmica, Vol. 87 No. 9, pp. 1247-1273.

Warning: These citations may not always be 100% accurate.