American Psychological Association 6th edition

Sepulcre, J. M., & Vidal, T. (2025). An extension of Bohr’s equivalence theorem to the case of exponential polynomials with distinct sets of frequencies. Annals of Functional Analysis, 16(4). https://doi.org/10.1007/s43034-025-00460-2

ISO-690 (author-date, English)

SEPULCRE, J. M. und VIDAL, T., 2025. An extension of Bohr’s equivalence theorem to the case of exponential polynomials with distinct sets of frequencies. Annals of Functional Analysis. 1 Oktober 2025. Vol. 16, no. 4, . DOI 10.1007/s43034-025-00460-2.

Modern Language Association 9th edition

Sepulcre, J. M., und T. Vidal. „An Extension of Bohr’s Equivalence Theorem to the Case of Exponential Polynomials With Distinct Sets of Frequencies“. Annals of Functional Analysis, Bd. 16, Nr. 4, Oktober 2025, https://doi.org/10.1007/s43034-025-00460-2.

Mohr Siebeck - Recht (Deutsch - Österreich)

Sepulcre, J. M./Vidal, T.: An extension of Bohr’s equivalence theorem to the case of exponential polynomials with distinct sets of frequencies, Annals of Functional Analysis 2025,

Emerald - Harvard

Sepulcre, J.M. und Vidal, T. (2025), „An extension of Bohr’s equivalence theorem to the case of exponential polynomials with distinct sets of frequencies“, Annals of Functional Analysis, Vol. 16 No. 4, verfügbar unter:https://doi.org/10.1007/s43034-025-00460-2.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.