Sabbaghi, H., Tabatabaei, S. H., & Fathianpour, N. (2025). Multi-element geochemical anomaly recognition applying geologically-constrained convolutional deep learning algorithm with Butterworth filtering of frequency domain information. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-27332-y
ISO-690 (author-date, English)SABBAGHI, Hamid, TABATABAEI, Seyed Hassan und FATHIANPOUR, Nader, 2025. Multi-element geochemical anomaly recognition applying geologically-constrained convolutional deep learning algorithm with Butterworth filtering of frequency domain information. Scientific Reports. 1 Dezember 2025. Vol. 15, no. 1, . DOI 10.1038/s41598-025-27332-y.
Modern Language Association 9th editionSabbaghi, H., S. H. Tabatabaei, und N. Fathianpour. „Multi-Element Geochemical Anomaly Recognition Applying Geologically-Constrained Convolutional Deep Learning Algorithm With Butterworth Filtering of Frequency Domain Information“. Scientific Reports, Bd. 15, Nr. 1, Dezember 2025, https://doi.org/10.1038/s41598-025-27332-y.
Mohr Siebeck - Recht (Deutsch - Österreich)Sabbaghi, Hamid/Tabatabaei, Seyed Hassan/Fathianpour, Nader: Multi-element geochemical anomaly recognition applying geologically-constrained convolutional deep learning algorithm with Butterworth filtering of frequency domain information, Scientific Reports 2025,
Emerald - HarvardSabbaghi, H., Tabatabaei, S.H. und Fathianpour, N. (2025), „Multi-element geochemical anomaly recognition applying geologically-constrained convolutional deep learning algorithm with Butterworth filtering of frequency domain information“, Scientific Reports, Vol. 15 No. 1, verfügbar unter:https://doi.org/10.1038/s41598-025-27332-y.