American Psychological Association 6th edition

Chen, F., Li, M., Zhao, Y., & Tang, Y. (2023). Convergence and superconvergence analysis of finite element methods for nonlinear Ginzburg–Landau equation with Caputo derivative. Computational and Applied Mathematics, 42(6). https://doi.org/10.1007/s40314-023-02409-4

ISO-690 (author-date, English)

CHEN, Fang, LI, Meng, ZHAO, Yanmin und TANG, Yifa, 2023. Convergence and superconvergence analysis of finite element methods for nonlinear Ginzburg–Landau equation with Caputo derivative. Computational and Applied Mathematics. 1 September 2023. Vol. 42, no. 6, . DOI 10.1007/s40314-023-02409-4.

Modern Language Association 9th edition

Chen, F., M. Li, Y. Zhao, und Y. Tang. „Convergence and Superconvergence Analysis of Finite Element Methods for Nonlinear Ginzburg–Landau Equation With Caputo Derivative“. Computational and Applied Mathematics, Bd. 42, Nr. 6, September 2023, https://doi.org/10.1007/s40314-023-02409-4.

Mohr Siebeck - Recht (Deutsch - Österreich)

Chen, Fang/Li, Meng/Zhao, Yanmin/Tang, Yifa: Convergence and superconvergence analysis of finite element methods for nonlinear Ginzburg–Landau equation with Caputo derivative, Computational and Applied Mathematics 2023,

Emerald - Harvard

Chen, F., Li, M., Zhao, Y. und Tang, Y. (2023), „Convergence and superconvergence analysis of finite element methods for nonlinear Ginzburg–Landau equation with Caputo derivative“, Computational and Applied Mathematics, Vol. 42 No. 6, verfügbar unter:https://doi.org/10.1007/s40314-023-02409-4.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.