Iwamasa, Y., & Takazawa, K. (2022). Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications. Mathematical Programming: A Publication of the Mathematical Optimization Society, 194(1-2), 229-256. https://doi.org/10.1007/s10107-021-01625-2
ISO-690 (author-date, English)IWAMASA, Yuni und TAKAZAWA, Kenjiro, 2022. Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications. Mathematical Programming: A Publication of the Mathematical Optimization Society. 1 Juli 2022. Vol. 194, no. 1-2, p. 229-256. DOI 10.1007/s10107-021-01625-2.
Modern Language Association 9th editionIwamasa, Y., und K. Takazawa. „Optimal Matroid Bases With Intersection Constraints: Valuated Matroids, M-Convex Functions, and Their Applications“. Mathematical Programming: A Publication of the Mathematical Optimization Society, Bd. 194, Nr. 1-2, Juli 2022, S. 229-56, https://doi.org/10.1007/s10107-021-01625-2.
Mohr Siebeck - Recht (Deutsch - Österreich)Iwamasa, Yuni/Takazawa, Kenjiro: Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications, Mathematical Programming: A Publication of the Mathematical Optimization Society 2022, 229-256.
Emerald - HarvardIwamasa, Y. und Takazawa, K. (2022), „Optimal matroid bases with intersection constraints: valuated matroids, M-convex functions, and their applications“, Mathematical Programming: A Publication of the Mathematical Optimization Society, Vol. 194 No. 1-2, S. 229-256.