American Psychological Association 6th edition

Bento, G. C., & Melo, J. G. (2012). Subgradient Method for Convex Feasibility on Riemannian Manifolds. Journal of Optimization Theory and Applications, 152(3), 773-785. https://doi.org/10.1007/s10957-011-9921-4

ISO-690 (author-date, English)

BENTO, Glaydston C. und MELO, Jefferson G., 2012. Subgradient Method for Convex Feasibility on Riemannian Manifolds. Journal of Optimization Theory and Applications. 1 März 2012. Vol. 152, no. 3, p. 773-785. DOI 10.1007/s10957-011-9921-4.

Modern Language Association 9th edition

Bento, G. C., und J. G. Melo. „Subgradient Method for Convex Feasibility on Riemannian Manifolds“. Journal of Optimization Theory and Applications, Bd. 152, Nr. 3, März 2012, S. 773-85, https://doi.org/10.1007/s10957-011-9921-4.

Mohr Siebeck - Recht (Deutsch - Österreich)

Bento, Glaydston C./Melo, Jefferson G.: Subgradient Method for Convex Feasibility on Riemannian Manifolds, Journal of Optimization Theory and Applications 2012, 773-785.

Emerald - Harvard

Bento, G.C. und Melo, J.G. (2012), „Subgradient Method for Convex Feasibility on Riemannian Manifolds“, Journal of Optimization Theory and Applications, Vol. 152 No. 3, S. 773-785.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.