American Psychological Association 6th edition

Au, Y. H., & Tunçel, L. (2025). Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator. Mathematical Programming: A Publication of the Mathematical Optimization Society, 212(1), 79-114. https://doi.org/10.1007/s10107-024-02093-0

ISO-690 (author-date, English)

AU, Yu Hin and TUNÇEL, Levent, 2025. Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator. Mathematical Programming: A Publication of the Mathematical Optimization Society. 1 July 2025. Vol. 212, no. 1, p. 79-114. DOI 10.1007/s10107-024-02093-0.

Modern Language Association 9th edition

Au, Y. H., and L. Tunçel. “Stable Set Polytopes With High Lift-and-Project Ranks for the Lovász–Schrijver SDP Operator”. Mathematical Programming: A Publication of the Mathematical Optimization Society, vol. 212, no. 1, July 2025, pp. 79-114, https://doi.org/10.1007/s10107-024-02093-0.

Mohr Siebeck - Recht (Deutsch - Österreich)

Au, Yu Hin/Tunçel, Levent: Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator, Mathematical Programming: A Publication of the Mathematical Optimization Society 2025, 79-114.

Emerald - Harvard

Au, Y.H. and Tunçel, L. (2025), “Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator”, Mathematical Programming: A Publication of the Mathematical Optimization Society, Vol. 212 No. 1, pp. 79-114.

Warning: These citations may not always be 100% accurate.