Au, Y. H., & Tunçel, L. (2025). Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator. Mathematical Programming: A Publication of the Mathematical Optimization Society, 212(1), 79-114. https://doi.org/10.1007/s10107-024-02093-0
ISO-690 (author-date, English)AU, Yu Hin und TUNÇEL, Levent, 2025. Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator. Mathematical Programming: A Publication of the Mathematical Optimization Society. 1 Juli 2025. Vol. 212, no. 1, p. 79-114. DOI 10.1007/s10107-024-02093-0.
Modern Language Association 9th editionAu, Y. H., und L. Tunçel. „Stable Set Polytopes With High Lift-and-Project Ranks for the Lovász–Schrijver SDP Operator“. Mathematical Programming: A Publication of the Mathematical Optimization Society, Bd. 212, Nr. 1, Juli 2025, S. 79-114, https://doi.org/10.1007/s10107-024-02093-0.
Mohr Siebeck - Recht (Deutsch - Österreich)Au, Yu Hin/Tunçel, Levent: Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator, Mathematical Programming: A Publication of the Mathematical Optimization Society 2025, 79-114.
Emerald - HarvardAu, Y.H. und Tunçel, L. (2025), „Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator“, Mathematical Programming: A Publication of the Mathematical Optimization Society, Vol. 212 No. 1, S. 79-114.