Treffer: Multimodal learning analytics of collaborative patterns during pair programming in higher education.
Weitere Informationen
Pair programming (PP), as a mode of collaborative problem solving (CPS) in computer programming education, asks two students work in a pair to co-construct knowledge and solve problems. Considering the complex multimodality of pair programming caused by students' discourses, behaviors, and socio-emotions, it is of critical importance to examine their collaborative patterns from a holistic, multimodal, dynamic perspective. But there is a lack of research investigating the collaborative patterns generated by the multimodality. This research applied multimodal learning analytics (MMLA) to collect 19 undergraduate student pairs' multimodal process and products data to examine different collaborative patterns based on the quantitative, structural, and transitional characteristics. The results revealed four collaborative patterns (i.e., a consensus-achieved pattern, an argumentation-driven pattern, an individual-oriented pattern, and a trial-and-error pattern), associated with different levels of process and summative performances. Theoretical, pedagogical, and analytical implications were provided to guide the future research and practice. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Educational Technology in Higher Education is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.