Treffer: The Landscape of College-Level Data Visualization Courses, and the Benefits of Incorporating Statistical Thinking.
Weitere Informationen
Data visualization is a core part of statistical practice and is ubiquitous in many fields. Although there are numerous books on data visualization, instructors in statistics and data science may be unsure how to teach data visualization, because it is such a broad discipline. To give guidance on teaching data visualization from a statistical perspective, we make two contributions. First, we conduct a survey of data visualization courses at top colleges and universities in the United States, in order to understand the landscape of data visualization courses. We find that most courses are not taught by statistics and data science departments and do not focus on statistical topics, especially those related to inference. Instead, most courses focus on visual storytelling, aesthetic design, dashboard design, and other topics specialized for other disciplines. Second, we outline three teaching principles for incorporating statistical inference in data visualization courses, and provide several examples that demonstrate how to follow these principles. The dataset from our survey allows others to explore the diversity of data visualization courses, and our teaching principles give guidance for encouraging statistical thinking when teaching data visualization. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Statistics & Data Science Education is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)