American Psychological Association 6th edition

Fernández, M., Fritzen, F., & Weeger, O. [ca. 2022]. Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. In International Journal for Numerical Methods in Engineering [Cd]. Oxford: Wiley. https://doi.org/10.26083/tuprints-00020164

ISO-690 (author-date, English)

FERNÁNDEZ, Mauricio, FRITZEN, Felix und WEEGER, Oliver, 2022. Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. Oxford: Wiley.

Modern Language Association 9th edition

Fernández, M., F. Fritzen, und O. Weeger. „Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials“. International Journal for Numerical Methods in Engineering, cd, Wiley, 2022, https://doi.org/10.26083/tuprints-00020164.

Mohr Siebeck - Recht (Deutsch - Österreich)

Fernández, Mauricio/Fritzen, Felix/Weeger, Oliver: Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials, Oxford 2022.

Emerald - Harvard

Fernández, M., Fritzen, F. und Weeger, O. (2022), Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials, International Journal for Numerical Methods in Engineering, Bd. , Wiley, Oxford, verfügbar unter:https://doi.org/10.26083/tuprints-00020164.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.