Fernández, M., Fritzen, F., & Weeger, O. [ca. 2022]. Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. In International Journal for Numerical Methods in Engineering [Cd]. Oxford: Wiley. https://doi.org/10.26083/tuprints-00020164
ISO-690 (author-date, English)FERNÁNDEZ, Mauricio, FRITZEN, Felix und WEEGER, Oliver, 2022. Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. Oxford: Wiley.
Modern Language Association 9th editionFernández, M., F. Fritzen, und O. Weeger. „Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials“. International Journal for Numerical Methods in Engineering, cd, Wiley, 2022, https://doi.org/10.26083/tuprints-00020164.
Mohr Siebeck - Recht (Deutsch - Österreich)Fernández, Mauricio/Fritzen, Felix/Weeger, Oliver: Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials, Oxford 2022.
Emerald - HarvardFernández, M., Fritzen, F. und Weeger, O. (2022), Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials, International Journal for Numerical Methods in Engineering, Bd. , Wiley, Oxford, verfügbar unter:https://doi.org/10.26083/tuprints-00020164.