Treffer: Use of client-side machine learning models for privacy-preserving healthcare predictions – a deployment case study
Titel:
Use of client-side machine learning models for privacy-preserving healthcare predictions – a deployment case study / Yacoub Abelard Njipouombe Nsangou, Rajib Kumar Halder, Ashraf Uddin, Laurenz Engel, Fruzsina Kotsis, Ulla T. Schultheiss, Johannes Raffler, Robin Kosch, Michael Altenbuchinger, Helena U. Zacharias, Gabi Kastenmüller, Jürgen Dönitz ; Herausgeber: Rainer Röhrig, Thomas Ganslandt, Klaus Jung, Ann-Kristin Kock-Schoppenhauer, Jochem König, Ulrich Sax, Martin Sedlmayr, Cord Spreckelsen, Antonia Zapf
Beteiligt:
Njipouombe Nsangou, Yacoub Abelard (Verfasser); Kumar Halder, Rajib (Verfasser); Uddin, Ashraf (Verfasser); Engel, Laurenz (Verfasser); Kotsis, Fruzsina (Verfasser); Schultheiss, Ulla T. (Verfasser); Raffler, Johannes (Verfasser) ; Kosch, Robin (Verfasser); Altenbuchinger, Michael (Verfasser); Zacharias, Helena U. (Verfasser); Kastenmüller, Gabi (Verfasser); Dönitz, Jürgen (Verfasser); Röhrig, Rainer (Herausgeber); Ganslandt, Thomas (Herausgeber); Jung, Klaus (Herausgeber); Kock-Schoppenhauer, Ann-Kristin (Herausgeber); König, Jochem (Herausgeber); Sax, Ulrich (Herausgeber); Sedlmayr, Martin (Herausgeber); Spreckelsen, Cord (Herausgeber); Zapf, Antonia (Herausgeber)
Veröffentlicht:
Augsburg : Universität Augsburg, 2025Amsterdam : IOS Press, 2025
Umfang:
1 Online-Ressource
Publikationstyp:
Sprache:
Englisch
Schriftenreihe/Mehrbändiges Werk:
Studies in Health Technology and Informatics ; 331
Anmerkungen:
In: German Medical Data Sciences 2025: GMDS Illuminates Health: proceedings of the 70th Annual Meeting of the German Association of Medical Informatics, Biometry, and Epidemiology e.V. (gmds), Jena, Germany, 7-11 September 2025, S. 292-306
DOI:
10.3233/shti251408