Treffer: On primitive sets of squarefree integers
Title:
On primitive sets of squarefree integers
Authors:
Source:
Periodica Mathematica Hungarica. 42:99-115
Publisher Information:
Springer Science and Business Media LLC, 2001.
Publication Year:
2001
Subject Terms:
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
1588-2829
0031-5303
0031-5303
DOI:
10.1023/a:1015200724657
Access URL:
https://zbmath.org/1668861
https://doi.org/10.1023/a:1015200724657
https://dblp.uni-trier.de/db/journals/pmh/pmh42.html#AhlswedeKS01
https://www.math.uni-bielefeld.de/ahlswede/homepage/public/158.pdf
https://link.springer.com/article/10.1023/A%3A1015200724657
http://www.math.uni-bielefeld.de/ahlswede/homepage/public/158.pdf
https://pub.uni-bielefeld.de/record/1883911
https://doi.org/10.1023/a:1015200724657
https://dblp.uni-trier.de/db/journals/pmh/pmh42.html#AhlswedeKS01
https://www.math.uni-bielefeld.de/ahlswede/homepage/public/158.pdf
https://link.springer.com/article/10.1023/A%3A1015200724657
http://www.math.uni-bielefeld.de/ahlswede/homepage/public/158.pdf
https://pub.uni-bielefeld.de/record/1883911
Rights:
Springer Nature TDM
"In Copyright" Rights Statement
"In Copyright" Rights Statement
Accession Number:
edsair.doi.dedup.....1aa7fa9d929133c48e255254334e184c
Database:
OpenAIRE
Weitere Informationen
The authors provide a proof of a conjecture of Pomerance and Sárközy (a generalized version) as follows. If \(\mathbb P^{\ast}_N\) is the set of squarefree integers not exceeding \(N\), then \[ \max_{\mathcal A \in \mathbb P^{\ast}_N}\sum_{a \in \mathcal A} {1 \over a} = (1+o(1)){6 \over {\pi^2}} = {{\log N} \over {(2\pi \log \log N)^{1/2}}} \] as \(N\to \infty\). They also povide sharp estimates for \(\max_{\mathcal A \in \mathbb P^{\ast}_N}|\mathcal A|\) and some evidence for new conjectures.