Result: On primitive sets of squarefree integers

Title:
On primitive sets of squarefree integers
Source:
Periodica Mathematica Hungarica. 42:99-115
Publisher Information:
Springer Science and Business Media LLC, 2001.
Publication Year:
2001
Document Type:
Academic journal Article
File Description:
application/xml
Language:
English
ISSN:
1588-2829
0031-5303
DOI:
10.1023/a:1015200724657
Rights:
Springer Nature TDM
"In Copyright" Rights Statement
Accession Number:
edsair.doi.dedup.....1aa7fa9d929133c48e255254334e184c
Database:
OpenAIRE

Further Information

The authors provide a proof of a conjecture of Pomerance and Sárközy (a generalized version) as follows. If \(\mathbb P^{\ast}_N\) is the set of squarefree integers not exceeding \(N\), then \[ \max_{\mathcal A \in \mathbb P^{\ast}_N}\sum_{a \in \mathcal A} {1 \over a} = (1+o(1)){6 \over {\pi^2}} = {{\log N} \over {(2\pi \log \log N)^{1/2}}} \] as \(N\to \infty\). They also povide sharp estimates for \(\max_{\mathcal A \in \mathbb P^{\ast}_N}|\mathcal A|\) and some evidence for new conjectures.